
In studying brain activity during the behavior of living animals, it is
not possible simultaneously to analyze all levels of control from
molecular events to motor responses. To provide insights into how
levels of control interact, we have carried out synthetic neural
modeling using a brain-based real-world device. We describe here
the design and performance of such a device, designated Darwin VII,
which is guided by computer-simulated analogues of cortical and
subcortical structures. All levels of Darwin VII’s neural architecture
can be examined simultaneously as the device behaves in a real
environment. Analysis of  its  neural activity during  perceptual
categorization and conditioned behavior suggests neural mech-
anisms for invariant object recognition, experience-dependent
perceptual categorization, first-order and second-order conditioning,
and the effects of different learning rates on responses to appetitive
and aversive events. While individual Darwin VII exemplars devel-
oped similar categorical responses that depended on exploration of
the environment and sensorimotor adaptation, each showed highly
individual patterns of changes in synaptic strengths. By allowing
exhaustive analysis and manipulation of neuroanatomy and large-
scale neural dynamics, such brain-based devices provide valuable
heuristics for understanding cortical interactions. These devices
also provide the groundwork for the development of intelligent
machines that follow neurobiological rather than computational
principles in their construction.

Introduction
A central goal of research in the neurosciences is to understand

the relationships between brain structure, function and behav-

ior. Several related factors make this a challenging task. One is

the sheer complexity of neuroanatomical networks overlain by

the physiological subtleties of brain dynamics. Another is the

number of levels of control ranging from molecular events to

perception, memory and the coordination of movement. Each

level requires the analysis of a number of simultaneous causal

factors and chains acting in parallel. The environment itself and

interactions between an organism and its econiche add further

complexity.

In dealing with this degree of complexity, careful experi-

mental analysis and theory building are obviously essential.

However, analytic approaches conducted separately at each level

are unlikely alone to provide a full picture of neural patterns in a

behaving organism. There are obvious limits on the number of

levels simultaneously observable during any given experiment.

Moreover, despite the power of mathematical and computational

approaches, they have not yet provided a multilevel picture

of the non-linear relationships between brain and behavioral

events.

To confront these issues and complement these approaches,

we have adopted a procedure called synthetic neural modeling

(Reeke et al., 1990; Edelman et al., 1992). This consists of

building devices capable of behavior, providing them with a

computationally simulated nervous system based on known

biological principles of neuroanatomical organization and

physiological activity, and then following the behavioral and

neuronal responses of such a construct in real time, in a

real-world environment. By following behavioral  and brain

responses completely at all levels of control in a particular

environment, one can formulate a synthetic picture that has

heuristic value in interpreting data obtained from behaving

animals.

A series of such brain-based devices capable of increasingly

sophisticated autonomous performance has been tested over

the last decade (Edelman et al., 1992; Almassy et al., 1998;

Krichmar et al., 2000; Sporns et al., 2000). In these earlier

devices, we demonstrated the learning of perceptual responses

and emphasized the role of value systems. Value systems are

neural structures that are necessary for an organism to modify its

behavior based on the salience or value of an environmental cue

(Friston et al., 1994). The value system in a brain-based device is

analogous to ascending neuromodulatory systems in that its units

show uniform phasic responses when activated and its output

acts diffusely over multiple pathways by modulating synaptic

change (Schultz et al., 1997; Sporns et al., 2000).

In the present report, we describe the construction and

performance of Darwin VII, a device capable of perceptual

categorization and conditioned behavior. We have extended

previous conditioning experiments to include second-order

conditioning and have carried out an extensive analysis of the

responses of simulated neuronal units. By probing simultaneous

brain and behavioral responses at all levels during perceptual

and conditioning tasks, we have obtained several new insights

into the organization of autonomous behavior. These include

a richer understanding of the effects of individual history on

learning, of the possible origins of invariant object recognition in

an analogue of the inferotemporal cortex, and of the rela- tion of

changes   in   synaptic   efficacy to appetitive and aversive

conditioned responses.

Materials and Methods
We have developed a heuristic in which a neurally organized mobile

adaptive device (NOMAD) explores its environment and through

experience-dependent learning develops adaptive behaviors. NOMAD is a

part of the Darwin series of automata in which theories of the nervous

system are tested by implementing brain-based devices (Reeke et al.,

1990; Edelman et al., 1992; Almassy et al., 1998; Krichmar et al., 2000).

In the present report, we will refer to the device and the neural simulation

together as Darwin VII. The NOMAD portion of Darwin VII consists of a

mobile base equipped with a CCD camera for vision (see Appendix, part

E), microphones for hearing (see Appendix, part F), conductivity sensors

for taste, and effectors for movement of its base, of its head, and of a

gripping manipulator having one degree of freedom (Fig. 1).

Darwin VII’s behavior was guided by a nervous system simulated on a

computer workstation (see Appendix, part A). The simulation was based

on the anatomy and physiology of vertebrate nervous systems but

obviously with fewer neurons and simpler architecture. The simulated
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nervous system was made up of a number of areas labeled according to

the analogous cortical and subcortical brain regions. Each area contains

different types of neuronal units consisting of simulated local populations

of neurons or neuronal groups (Edelman, 1987). To distinguish modeled

areas from real counterparts, the simulated areas are indicated in italics

(e.g. IT). A neuronal unit in Darwin VII is simulated with a mean firing

rate model and the activity of such a unit corresponds roughly to the firing

activity of a group of neurons averaged over a time period of 200 ms.

In the present experiments, the simulated nervous system contained

18 neuronal areas, 19 556 neuronal units, and ∼ 450 000 synaptic connec-

tions. Figure 2 shows a high-level diagram of the different neural areas and

the synaptic connections between neural areas in the simulated nervous

system. Further details of the parameters describing neuronal unit activity

and neuronal unit connectivity can be found in the Appendix (see Tables

A1 and A2, and Appendix, parts B and C). Each simulation cycle took

∼ 200 ms of real time. A simulation cycle is the period during which the

current sensory input is processed, the activities of all neuronal units are

computed, the connection strengths of all plastic connections are

computed, and motor output is generated (see Appendix, parts A and B).

Connections between and within neuronal areas were subject to

activity-dependent modification following a value-independent (see

Appendix, part C) or value-dependent (see Appendix, part D) synaptic

rule. Synaptic modification was determined by both pre- and post-

synaptic activity and resulted in either strengthening or weakening of the

Figure 1. Darwin VII consists of a mobile base equipped with several sensors and
effectors (NOMAD), and a neural simulation running on a remote computer workstation.
NOMAD contains a radio modem to transmit status and auditory information to the
computer workstation carrying out the neural simulation and to receive motor
commands from the simulation. Video output from a CCD camera mounted on Darwin
VII is sent to the workstation via RF transmission. RF input and output to NOMAD allows
for untethered exploration. NOMAD is constructed on a circular platform (developed by
Nomadic Technologies Inc., Mountain  View, CA,  USA) with wheels that  permit
independent translational and rotational motion, with pan and tilt movement for its
camera and microphones, and with object gripping by a one degree of freedom
manipulator or gripper. The CCD camera, two microphones on either side of the camera,
and sensors embedded in the gripper that measure the surface conductivity of stimuli
provide sensory input to the neuronal simulation. Eight infrared (IR) sensors are mounted
at 45° intervals around the mobile platform. The IR sensors are responsive to the
boundaries of the environment and were used to trigger reflexes for obstacle avoidance.
All behavioral activity other than obstacle avoidance is triggered by signals received
from the neural simulation.

Figure 2. Schematic of the regional and functional neuroanatomy of Darwin VII. There
are six major systems that make up the simulated nervous system: an auditory system,
a visual system, a taste system, sets of motor neurons capable of triggering behavior, a
visual tracking system, and a value system. In the version used in the present
experiments, the simulated nervous system contained 18 neuronal areas, 19 556
neuronal units and ∼ 450 000 synaptic connections. A neuronal unit corresponded to the
mean activity of a small group of real neurons over ∼ 200 ms. The 64 × 64 gray level
pixel image captured by the CCD camera was relayed to a retinal area R and transmitted
via topographic connections to a primary visual area VAP. There were three sub-
partitions in VAP selective for blob-like features, for short horizontal line segments, or
short vertical line segments. Responses within VAP closely followed stimulus onset and
projected non-topographically via activity-dependent plastic connections to a secondary
visual area, analogous to the inferotemporal cortex (IT). The frequency and amplitude
information captured by Darwin VII’s microphones was relayed to a simulated cochlear
area (LCoch and RCoch) and transmitted via mapped tonotopic and activity-dependent
plastic connections to a primary auditory area A1. The activity of each cochlear neuronal
unit was broadly tuned to a preferred frequency and scaled according to the signal
amplitude (see Appendix, F. Auditory System and its Inputs). A1 and IT contained local
excitatory and inhibitory interactions producing firing patterns that were characterized
by focal regions of excitation surrounded by inhibition. A1 and IT sent plastic projections
to the value system S and to the motor areas Mapp and Mave. These two neuronal areas
were capable of triggering two distinct behaviors, appetitive and aversive. Appetitive or
aversive responses were triggered if the difference in instantaneous activity between
motor areas Mapp and Mave exceeded a behavioral threshold (β = 0.3). The taste
system (Tapp and Tave) consisted of two kinds of sensory units responsive to either the
presence or absence of conductivity across the surface of stimulus objects as measured
by sensors in Darwin VII’s gripper. Picking up and sampling the conductivity of a block is
innate to Darwin VII’s behavior. In all the experiments, strongly conductive blocks
activated Tapp and weakly conductive blocks activated Tave. The taste system sent
information to the motor areas (Mapp and Mave) and the value system (S). Area S
projects diffusely with long-lasting value-dependent activity to the auditory, visual and
motor behavior neurons. The visual tracking system controlled navigational movements,
in particular the approach to objects identified by brightness contrast with respect to the
background. To achieve tracking behavior, the retinal area R projected to area C
(‘colliculus’) with connection strengths assigned based on learning experiments in a
previous study (Edelman et al., 1992). Neural areas A1i, ITi, So and Si, and their
corresponding synaptic projections, are omitted for clarity (see Tables A1 and 2 for
complete details).
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synaptic efficacy between two neuronal units. We used a modified

Bienenstock, Cooper and Munro (BCM) learning rule to govern synaptic

change because it has a region in which weakly correlated inputs are

depressed and strongly correlated inputs are potentiated (Bienenstock

et al., 1982). Simplifying the BCM learning rule by making it piecewise

linear and fixing the thresholds, resulted in an efficient biologically

based learning rule (see Appendix, part C). Plastic connections that

were value-dependent were made between areas involved in responses

to salient environmental events [A1/IT→Mapp/Mave, A1/IT→S; see

(Aston-Jones and Bloom, 1981; Ljungberg et al., 1992)]. Plastic

connections that were not value-dependent were made between areas

where perceptual categories were to be learned from experience

(VAP→IT, LCoch/RCoch→A1). Non-plastic connections were between

neural areas where there were ref lex responses (Tapp/Tave→Mapp/Mave,

R→C), local projections within an area (IT→IT, A1→A1), or between

areas where it was assumed that plasticity had already occurred very

early in development [R→VAP, see Crair et al. (Crair et al., 1998)]. On

the assumption that these synaptic changes do not saturate or persist

indefinitely, we used a passive synaptic decay term (see ε in Appendix,

part C) to express a decline in synaptic strength in the absence of activity.

Activation of the simulated value system (area S, Fig. 2) signaled the

occurrence of salient sensory events and contributed to the modulation of

connection strengths of all active synapses in the affected pathways (see

value-dependent projections in Fig. 2). For example, ‘tasting’ a block

picked up by Darwin VII’s gripper is a salient event affecting subsequent

behavior that is reinforced or weakened through synaptic change. Area S

is thus analogous to an ascending neuromodulatory value system (Schultz

et al., 1997; Sporns et al., 2000).

Experimental evidence suggests that key parameters of neural

plasticity may vary over the course of postnatal development (Kato et al.,

1991; Fox, 1995; Kirkwood et al., 1995). Since our model was intended to

ref lect both early and late stages of development, we incorporated such

changes in postnatal cortical plasticity by modeling a transition from an

earlier critical period to a later adult period. Inasmuch as activity-

dependent plasticity tends to destabilize the activity of neuronal networks

in the absence of homeostatic mechanisms (Turrigiano and Nelson,

2000), connections from VAP to IT, cochlear neuronal units (LCoch and

RCoch) to A1, and IT/A1 to Mapp/Mave (see Fig. 2) underwent several

stages of plasticity, characterized by progressive changes in learning rate

and synaptic decay as a function of activity in a particular modality (see

Table A2 in the Appendix). Without these homeostatic mechanisms,

unbounded long-term potentiation could cause network activity to

increase and lose its discrimination with the consequence that neuronal

units would respond to any input. From earlier to later stages of develop-

ment, these changes are qualitatively as follows: synaptic plasticity

decreases in magnitude; synaptic weights become more resistant to decay

back to their original levels; and thresholds for synaptic potentiation

increase.

In the experiments in which individual variation was to be examined,

each Darwin VII ‘subject’ shared the same physical device, but had an

instantiation in which the simulated nervous system was unique, as a

result of different random initializations within the constraints given

by Table A2, in both the connectivity between individual neuronal units

and the initial connection strengths between those units. Because the

connectivity between neuronal units was constrained by a common set of

projections, however, large-scale connectivity (i.e. projections between

neural areas) was similar between subjects. Details of the neuro-

anatomical constraint parameters for each synaptic projection, as well as

parameters for the synaptic efficacy rules and the projection distribu-

tions, can be found in the Appendix (part C and Tables A1 and A2).

Darwin VII’s environment consisted of an enclosed area with black

walls and a f loor covered with opaque black plastic panels, on which we

distributed stimulus blocks (6 cm metallic cubes) in various arrangements

(Fig. 1). The top surfaces of the blocks were covered with removable

black and white patterns; the other surfaces of the blocks were featureless

and black. All experiments reported in this paper were carried out with

multiple exemplars of two basic designs: blobs (several white patches

2–3 cm in diameter) and stripes (width 0.6 cm, evenly spaced). Stripes on

blocks in the gripper can be viewed in either horizontal or vertical

orientations, yielding a total of three stimulus classes of visual patterns to

be discriminated (blob, horizontal and vertical). A f lashlight mounted

on Darwin VII and aligned with its gripper caused the blocks, which

contained a photodetector, to emit a beeping tone when Darwin VII was

in the vicinity. The sides of the stimulus blocks were metallic and could be

rendered either strongly conductive (‘good taste’ or appetitive) or weakly

conductive (‘bad taste’ or aversive). Gripping of stimulus blocks activated

the appropriate taste neuronal units (either area Tapp or area Tave) to a level

sufficient to drive the motor areas above a behavioral threshold. In the

experiments described in this paper, strongly conductive blocks with a

striped pattern and a 3.9 kHz tone were chosen arbitrarily to be positive

value exemplars, whereas weakly conductive blocks with a blob pattern

and a 3.3 kHz tone represented negative value exemplars.

Basic modes of behavior built into Darwin VII included IR sensor-

dependent obstacle avoidance, visual exploration, visual approach and

tracking, gripping and ‘tasting’, and two main classes of innate behavioral

ref lex responses (appetitive and aversive). With the exception of obstacle

avoidance, selection among the above behaviors was under control of

the simulated nervous system. Appetitive and aversive responses were

triggered when the difference in activity between motor areas Mapp and

Mave exceeded a threshold (Fig. 2). These responses could be activated by

taste (the unconditioned stimulus, US, triggering an unconditioned

response, UR) or by auditory or visual stimuli (the conditioned stimulus,

CS, triggering a conditioned response, CR). Prior to conditioning, taste

triggered the behavioral responses; after conditioning, either a visual

pattern or an auditory pattern could evoke behavioral responses. Un-

conditioned appetitive and aversive behavioral responses consisted of

prolonged gripping and ‘tasting’ of a stimulus block, releasing the block,

and then turning counterclockwise. Conditioned appetitive responses,

which occurred when motor area activity exceeded the threshold before

tasting, differed from unconditioned appetitive responses  in that  a

clockwise  turn  was  executed after ‘tasting’ a block. In conditioned

aversive responses, Darwin VII avoided a stimulus block by backing away

without picking it up and then turning clockwise. Thus, during the

conditioning experiments, in which many stimuli were encountered over

an extended period of time, Darwin VII developed perceptual categories

that modified its behavioral responses.

Results
We describe details of two sets of experiments that demonstrate

the usefulness of synthetic brain-based devices in testing

theories of the nervous system and in understanding how inter-

actions of the nervous system, the body, and the environment

affect behavior. The first set focused on visual perceptual

categorization and invariance in cortical responses; the second

investigated conditioning experiments involving multiple sens-

ory modalities.

Perceptual Categorization

Perceptual categorization is the ability to discriminate and categ-

orize sensory stimuli (Clark et al., 1988; Kilgard and Merzenich,

1998). Development of this ability is obviously necessary for

learning and conditioning and, for this reason, was extensively

explored in Darwin VII. In primates, the inferotemporal cortex

is an area that is believed to be associated with visual object

recognition (Tanaka, 1996). In Darwin VII, activity in the

simulated inferotemporal cortex, area IT (Fig. 2), provided the

basis for visual perceptual categorization. Initially, IT’s responses

to visual stimuli were  weak and  diffuse (see IT activity in

Fig. 3A). After approximately five stimulus encounters, activity-

dependent plasticity between VAP and IT caused IT responses to

the different stimuli to become strong, sharp and separable (see

IT activity in Fig. 3B). It is this strong, discriminative activity of

neuronal groups within IT in response to visual stimuli as well as

the appropriate behavioral response that we refer to as visual

categorization in Darwin VII.

Invariant Object Recognition

In animals, perceptual categorization in the inferotemporal

820 Categorization and Conditioning in a Brain-based Device • Krichmar and Edelman



Figure 3. Darwin VII during behavioral experiments. The panels to the right of Darwin VII show activity of selected neural areas in the simulation (R, top left; IT, top right; A1, bottom
left; Mave, bottom right, left side; Mapp, bottom right, right side). The image of NOMAD on the left side of each figure reflects behavior corresponding to the neural activity at the
moment depicted on the right side of the figure. Each pixel in a selected neural area represents a neuronal unit and activity is normalized in a range from no activity (dark blue) to
maximal activity (bright red). (A) Darwin VII upon the first encounter of an aversive block. The stimulus block shown in this figure and in (B) had a blob visual pattern, but did not beep.
In this early conditioning trial, Darwin VII is shown picking up and ‘tasting’ an aversive block. Activity in IT is insufficient, but activity in the taste system Tave is sufficient to drive activity
in the aversive motor behavior neural area (Mave) above the behavioral threshold. (B) Darwin VII upon the tenth encounter with an aversive block having blob visual patterns. After
primary conditioning with visual stimuli, activity in area IT is sufficient to drive the Mave neuronal units above the behavioral threshold triggering a motor response to avoid ‘tasting’ an
aversive block. (C) Darwin VII upon the tenth encounter with an aversive block having only auditory cues. The stimulus blocks shown in the figure beeped, but had a pattern made up
of small black and white shapes that was high contrast enough to evoke a visual tracking response in area C, but did not have enough of a pattern to evoke a response in VAP and thus
IT. After primary conditioning with auditory stimuli, activity in area A1 is sufficient to drive the Mave neuronal units above the threshold to trigger a behavioral response.
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cortex is invariant with respect to differences in position, scale

and rotation of an object (Tanaka et al., 1991; Tovee et al., 1994;

Ito et al., 1995; Rolls and Tovee, 1995; Tanaka, 1996). Such

invariant object recognition has been difficult to achieve in

computer vision systems (Mundy and Zisserman, 1992; Mundy et

al., 1992; Shashua, 1993; Weinshall, 1993). In the present work,

however, Darwin VII’s object recognition was observed to be

invariant with respect to scale, position and rotation. Visual

categorization of a stimulus occurred no matter where an object

appeared in Darwin VII’s visual field, with the apparent size of

the stimulus ranging from a maximum when the object was

directly in front of Darwin VII (Fig. 3A) to one-quarter of the

maximum size when the object was distal to Darwin VII. Correct

categorization of striped blocks in Darwin VII’s field of vision,

when blocks were not in its gripper, occurred when the stripes

on the blocks were rotated over a range of ±30° of a horizontal or

vertical reference.

Invariant object recognition required continuous, time-

varying sensory input while Darwin VII moved. Invariant

responses developed as a result of competition among activity-

dependent plastic connections between retinotopically mapped

VAP and non-topographically mapped IT. The connections that

were potentiated earliest were those with VAP receptive fields

corresponding to regions near Darwin VII’s gripper, regions

where IT responses to the neural stimulus were first sustained

(Fig. 4, top ‘First Horizontal Striped Block’). These connections

had a competitive advantage; they received not only the earliest

but also the longest exposure to the stimulus as a result of the

time spent by the block in the gripper. The maintenance of

discriminative, persistent patterns of neuronal groups in IT

required sustained high activity resulting from strengthening

of plastic connections with VAP neuronal units that received

continuously varying images of the block. Upon each approach

and withdrawal from the stimulus block, the number of potenti-

ated connections increased, resulting in recruitment of neuronal

units with receptive fields that responded to visual stimuli

beyond Darwin VII’s gripper (Fig. 4, top). An example of the

resultant activity in VAP and IT during invariant object recog-

Figure 4. Invariance with respect to position, scale and rotation emerges from a persistent pattern of activity in area IT as the pattern of activity in the VAP areas moves sequentially
across Darwin VII’s field of vision. Shown in black (see top row) are the locations of VAPH neuronal units responding to a horizontal visual pattern, whose synaptic weights, going from
VAPH to area IT, increased from their initial value. The VAPH neuronal units are pictorially organized such that receptive fields near NOMAD’s base are at the top of the figure and
receptive fields that are further away from NOMAD’s base are at the bottom of the figure. After presentation of the first horizontal block, most of the potentiation of synaptic weights
occurred in VAPH neuronal units with receptive fields near the position of Darwin VII’s gripper. After each subsequent stimulus presentation with continuous movement, the
potentiated receptive fields build up throughout Darwin VII’s field of vision. The proportion of potentiated VAPH neuronal units increased from 10% after the first stimulus presentation
to 33% after the fifth stimulus presentation. The bottom two rows show sequential activity in VAPH and IT during a stimulus encounter with one striped block. Activity in neuronal area
VAPH is shown in the middle row and that in neuronal area IT is shown in the bottom row as Darwin VII approaches the stimulus, grasps and tastes, and moves away.
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nition is shown in the bottom two rows of Figure 4. When the

temporal sequence of the images leading to invariance was

artificially shuff led (Almassy et al., 1998), invariant object

recognition did not occur. As further considered in the

Discussion, the invariance arose mainly as a result of an initial

strengthening of VAP to IT synapses that was reinforced and

expanded by subsequent inputs from the stimulus block during

Darwin VII’s movements.

Stimulus History and Individual Variation

Differences in an individual’s perceptual history can have an

effect on the organization and response of the nervous system.

For  example, more neurons  in the monkey inferotemporal

cortex respond to familiar than to unfamiliar stimuli (Kobatake

et al., 1998). Using Darwin VII, we performed experiments

concerned with experience-dependent effects on categorization

during the development of perceptual categories as well as after

such development.

We first investigated the effect of variations in presentation

frequency of each stimulus class on the development of neuronal

unit responses. Darwin VII explored an environment that was

partially segregated into two equal sized areas. One area mainly

contained blocks with blobs and the other area mainly contained

blocks with stripes. In each of 14 separate experiments, Darwin

VII started with an identical simulated nervous system that had

not sampled any stimuli. The number of neuronal units in IT

responding to a given stimulus (whether blob, horizontal stripe

or vertical stripe) increased selectively with an increase in

the frequency of presentation of that stimulus class. Statistical

significance was tested using, r, Pearson’s product moment

correlation. Stimulus presentation frequency was found to be

positively correlated with patterned neural activity in IT that was

individually characteristic for each of the visual stimulus classes

(blob: r = 0.71, P < 0.005; horizontal: r = 0.75, P < 0.003;

vertical: r = 0.61, P < 0.03). These findings are similar to the

results of neuronal recordings in the monkey inferotemporal

cortex in that more IT neurons responded to familiar than to

unfamiliar objects in recognition tasks (Kobatake et al., 1998).

In these experience-dependent responses, competitive and

selective interactions among neuronal units from VAP to IT and

within IT governed the changes in the number of those units

that responded to a stimulus. An increase in neuronal group size

ref lected the activity-dependent changes in synaptic connec-

tions from neuronal units in VAP to neuronal units in IT, leading

to increased activity in IT. Through intrinsic excitatory connec-

tions, this increased activity further recruited neighboring

neuronal units in IT. The change in neuronal group size was

competitive: a group specific to one stimulus could grow at the

expense of another neuronal group associated with another

stimulus (Clark et al., 1988).

In the second set of experiments on experience-dependent

perceptual categorization, we studied the effect of stimulus

presentation frequency on neural mapping in IT after visual

categories had already been developed. To reach this level of

experience, Darwin VII sampled an equal proportion (eight

each) of blocks in the three stimulus classes. Darwin VII then

sampled either eight additional stimuli containing all three

stimulus classes or eight additional stimuli containing any two

out of the three stimulus classes. Thus, some stimuli were more

frequently sampled than others.

In contrast to the previous experiments on early development,

after extensive experience, the number of neuronal units in IT

responding to more frequently sampled stimuli did not change

significantly, suggesting that responses in IT had become

‘saturated’ with respect to the familiar stimuli. However, in the

experiments in which Darwin VII responded to the less

frequently sampled stimulus, the number of IT neuronal units

was significantly less than that in the controls (Table 1). Two

factors appear to be responsible for these results. First, the

growth of the neuronal groups in IT was limited by intrinsic

excitatory and inhibitory connections. Recurrent excitation

caused the size of the groups to grow, but lateral inhibition kept

that growth in check (see IT activity in Fig. 3B). At a certain size,

the different neuronal groups that were active in response to a

visual stimulus competed with each other and their growth was

halted. In essence, the memory for these perceptual categories is

stable. Secondly, the decrease in neuronal units responding to an

under-sampled stimulus was governed, in part, by the decay rate,

ε, in the activity-dependent synaptic efficacy rule (see Appendix,

part C). This caused the efficacy of each synaptic connection

that had not been recently updated to decay towards its original

value. If, for example, the blob visual stimulus was not encoun-

tered for a protracted period of time, synaptic connections from

VAPB to IT weakened and fewer IT neuronal units responded

to that stimulus class. In essence, the perceptual category was

forgotten.

In addition to the inf luences of environmental experience on

perceptual categorization, there were noteworthy individual

variations in neuronal response patterns related to behavioral

differences. Seven Darwin VII subjects, each with nervous

systems having different initial conditions in connectivity and

connection strengths, were allowed to sample at least 10 aversive

and 10 appetitive blocks. The IT activity patterns showed signifi-

cant variations between subjects and between stimulus classes

within the same subject (Fig. 5). For an individual subject, many

neuronal units were active for more than one stimulus class, but

the overall pattern of activity of a given subject’s response to

each stimulus class was distinguishable. Despite the notable

individual differences in patterns of neural activity, all subjects

were able to categorize the three stimulus classes as shown by

similar behavioral responses.

Response Sampling

In contrast to the limited number of cells whose activity can be

monitored in live animals, the design of Darwin VII allowed us to

record all such activity in all neuronal units. Neurophysiologists

often test whether limited samples from brain areas are robust

predictors of responses to input stimuli (Bialek and Zee, 1990;

Theunissen and Miller, 1991; Brown et al., 1998). It was there-

fore of interest to investigate whether a sparse sampling of

Table 1
Role of history in perceptual categorization

Test stimuli Effect of stimulus presentation frequency on IT activity after development of
visual categorization

Control Stripes only Horizontal and blob Vertical and blob

Blob 88.8 72.9* 89.9 91.6
Horizontal 54 55.6 57.7 31.5*
Vertical 24.2 24.4 17.9* 23.8

After visual categories had been developed (eight presentations of each stimulus class), the
activity in IT stayed relatively constant for stimuli presented in higher proportions, but decreased
for stimuli presented in lower proportions. Each row in the table shows the median number of
neuronal units in IT responding to stimuli for a control group (eight additional presentations of blob,
horizontal and vertical stimuli) and three experimental groups in which eight additional stimuli from
two out of the three classes were presented. There were 10 trials for each group with identical
initial conditions in the simulated nervous system. The asterisks denote a significant difference
(P < 0.05) in medians between the control group and an experimental group using the Wilcoxon
Rank Sum test of medians.
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neural patterns in the simulated area IT would reliably predict

the response to visual stimuli by Darwin VII. We allowed seven

individually different Darwin VII subjects to sample at least 20

aversive and 20 appetitive blocks. For each Darwin VII subject,

patterns of  activity in IT during the development of visual

categories (i.e. exposure to the first 10 aversive and appetitive

exemplars) were compared with patterns of activity in IT

after categorization (i.e. exposure to the last 10 aversive and

appetitive exemplars (see Appendix, part G). The accuracy of

classification based on IT activity improved with each stimulus

exemplar to near perfect performance (Fig. 6). Classifications

remained accurate even when relatively small sub-populations

(1% of the neuronal units) in IT were sampled; below this range,

prediction failed. The relatively small proportion of neuronal

units in IT sufficient to classify responses to a given stimulus is in

accord with results in live animals, as seen for example, in the

limited number of hippocampal neurons needed to reconstruct

a rat’s position in space (Wilson and McNaughton, 1993) or the

limited number of motor cortical neurons needed to predict a

monkey’s hand position (Georgopoulos et al., 1986).

Conditioning Experiments

In a series of conditioning experiments, Darwin VII was trained

to associate the taste value of objects with their visual and aud-

itory characteristics. Weakly conductive objects were assigned

innate negative value (‘bad taste’)  and strongly conductive

objects were assigned innate positive value (‘good taste’). In

accord with our prior and arbitrary assignments of block prop-

erties, Darwin VII, through experience-dependent learning,

associated the blob visual pattern and 3.3 kHz beeping tone

with negative value, and the striped visual pattern and 3.9 kHz

beeping tone with positive value. Seven individually different

Darwin VII subjects participated in the experiments, in which

each subject encountered at least 10 appetitive and 10 aversive

blocks. In experiments in which only visual stimuli were paired

with ‘taste’, positive conditioned responses occurred in >70% of

trials after encountering the sixth exemplar and in >90% after

encountering the tenth exemplar. In auditory conditioning trials,

conditioned responses occurred in over 80% of trials following

exposure to the sixth exemplar. While performance improved

with training, it never reached perfection and occasional

‘mistakes’ were made. This unpredictability is a property of

selectionist systems in general. These are systems consisting of

a population of variant repertoires which can be differentially

Figure 5. Comparison of patterns of activity in area IT for the three visual stimuli across different Darwin VII subjects. The first two contour plots on the left show, for two
representative subjects, the borders of neuronal group activity in response to blobs (red lines), horizontal stripes (green lines) and vertical stripes (blue lines). The contours on the far
right show the activity for two different subjects in the same plot, in response to vertical stimuli for subject 4 (dark blue) and for subject 5 (light blue). Across all subjects tested
(n = 7), the mean overlap of activity within each subject but between stimuli was 26.6% (σ = 0.10). The mean overlap of activity between different subjects was 22.1% (σ = 0.09)
in response to blob patterns, 26.9% (σ = 0.11) in response to horizontal striped patterns, and 20.0% (σ = 0.10) in response to vertical striped patterns.

Figure 6. Classification of responses to stimuli by sampling IT activity. Classification of
the input stimulus during training is based on IT activity after training was complete. The
different data series represent the percentage of IT neuronal units used to classify the
input stimuli. Each point on the chart represents the average of seven Darwin VII
subjects where the accuracy of each individual subject is based on an average of 10
random sub-samplings of neuronal units in IT (see Appendix, G. Sampling of IT activity
for Classification of Responses). The accuracy of classification increases with the
numbers of exemplar encounters yielding near total accuracy by the eighteenth
encounter when all 784 neuronal units in IT are sampled and also when 10% of the
neuronal units in IT are sampled. Accuracy drops to chance (25% or lower) when only
0.1% of the neuronal units in IT is sampled.
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amplified,  thus  yielding responses  to unpredicted  or novel

events. Such selection has been proposed as being a property of

real nervous systems (Edelman, 1987). The unpredictability of

behavioral responses in Darwin VII coupled with the variability

of a complex environment did not, however, prevent the device

from learning after mistakes, from generalizing over sensory

inputs, and even from dealing with novel situations.

Early during the conditioning trials, Darwin VII picked up and

‘tasted’ blocks that led to either appetitive or aversive responses

(see Fig. 3A). During this period, it was the output of the taste

neuronal units that activated the value system (S) and drove the

motor neuronal units (Mapp and Mave) to cause a behavioral

response. After conditioning, however, both the value system

and the motor neuronal units were immediately activated upon

the onset of IT’s response to a visual pattern or A1’s response to

a tone. This shift following learning, from value system activity

that was triggered in early trials by the unconditioned stimulus to

value system activity triggered at the onset of the conditioned

stimulus, is analogous to the shift in dopaminergic neuronal

activity found in the primate ventral tegmental area after

conditioning (Schultz et al., 1997).

After associating visual patterns with taste, Darwin VII

continued to pick up and ‘taste’ stripe-patterned blocks, but

avoided blob-patterned blocks (see Fig. 3B). After associating

auditory sounds with taste, Darwin VII continued to pick up the

high frequency beeping blocks, but avoided the low frequency

beeping blocks (see Fig. 3C).

We extended the training paradigm by carrying out second-

order conditioning experiments (Rescorla, 1980). In the first

stage of conditioning, a single conditioned stimulus (CS1; either

the tone or the visual pattern) was paired with taste for ∼ 10

encounters with each block type until learning was achieved. In

the second stage of conditioning, the two conditioned stimuli

(CS1 and CS2, tone and visual pattern) were paired together for

∼ 10 encounters with each block type. After the second stage,

Darwin VII’s performance was tested by presenting CS2 alone

for 10 encounters of each block type. There were four possible

behavioral responses for each stimulus encounter: (i) appetitive

unconditioned response, (ii) appetitive conditioned response,

(iii) aversive unconditioned response, and (iv) aversive con-

ditioned response. When CS1 was visual and CS2 was auditory

(see high tone and low tone on the left side of Fig. 7), Darwin VII

made the appropriate appetitive and aversive conditioned

responses to auditory stimuli. However, when CS1 was auditory

and CS2 was visual, Darwin VII responded incorrectly to visual

aversive stimuli (see blobs on the left side of Fig. 7). As we

discuss later, this resulted from the fact that, with this sequence

of conditioned stimuli in the aversive learning condition, the

blocks were avoided before gripping, and thus taste reinforce-

ment could not occur. Examination of the synaptic weights

between area IT and the motor neuronal units in this case

showed that the connection strengths from IT to Mapp were

greater than from IT to Mave (Fig. 8A). By altering the synaptic

efficacy function (Fig. 8 inset), we were able to assure that

aversive stimuli evoked a stronger learning response than

appetitive stimuli (Fig. 8B). This change led to more balanced

synaptic weights and more appropriate behavioral responses

(Fig. 7, right side).

Discussion
Brains in organisms as complex as vertebrates differ in many

ways from digital computers or Turing machines. Unlike com-

puter inputs, signals from the environment are not unequivocally

coded. Brains of different individuals within a species vary

enormously in development, history and fine-scale physiology.

Sensorimotor experience is also highly individual despite

charac- teristic species behaviors. Moreover, perceptual

categorizations and memories are not simple replicas of world

input patterns. Instead, these products of higher brain functions

adapt in a species-specific fashion to environmental change.

Since many of the functions of individual brains result from

complex dynamic interactions at a variety of levels, the

elucidation of underlying mechanisms requires simultaneous

measurements and sampling across these levels. In living

animals, these are difficult to obtain and compare.

These considerations suggest that synthetic modeling of the

kind described in this paper may be a useful strategy in attempts

to understand higher brain functions. The behavior of Darwin

VII shows that a synthetic brain-based device operating on bio-

logical principles and without pre-specified instructions can

carry out perceptual categorization and conditioned responses.

The successful performance of the device rests on the selectional

modulation of its neuronal activity by behavior as well as on the

existence of constraints provided by its value system. In both

the perceptual categorization and conditioning experiments, the

development of categorical responses required exploration of

the environment and sensorimotor adaptation through specific

and highly individual changes in connection strengths. We

Figure 7. Behavioral responses after second-order conditioning, averaged over 7
Darwin VII subjects. The figure shows the overall percentages of each of the four
possible behavioral responses to a stimulus. Left panel: synaptic efficacy rule governing
learning rate was the same for aversive and appetitive events. When CS1 was visual and
CS2 was auditory, 92% of the responses to appetitive auditory stimuli (high tone) were
appetitive conditioned responses and 91% of the responses to aversive auditory stimuli
(low tone) were aversive conditioned responses. When CS1 was auditory and CS2 was
visual, 99% of the responses to appetitive visual stimuli (stripes) were appetitive
conditioned responses but only 14% of the responses to aversive visual stimuli (blobs)
were aversive conditioned responses. Right panel: synaptic efficacy rule governing
learning rate was adjusted to be greater for aversive events than appetitive events (see
Fig. 8 inset). When CS1 was visual and CS2 was auditory, nearly all the responses were
conditioned responses (97% for appetitive and 96% for aversive). When CS1 was
auditory and CS2 was visual, the conditioned responses were 91% for appetitive and
increased to 57% for aversive as compared to 14% in the previous condition (see left
panel). The number of ‘incorrect’ appetitive conditioned responses to the aversive
blob-patterned stimulus dropped from 50%  to 14%.  The appetitive conditioned
responses could all be attributed to the behavior of one of the seven Darwin VII subjects.
If this subject was  omitted, there were  no inappropriate appetitive  conditioned
responses and the proportion of aversive conditioned responses increased to 67%.
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observed Darwin VII’s overall behavior while at the same time

recording the state of every neuronal unit and synaptic

connection in its simulated nervous system. By collecting these

neuronal data, we were able to demonstrate the development

of neuronal groups during categorization and recognition by

individual subjects (Fig. 5), to show that reliable classification of

responses to visual stimuli could be based on the sampling of

a small sub-population of neuronal units (Fig. 6), and to relate

learning responses to functional changes in synaptic efficacy

(Figs 7 and 8).

Darwin VII’s nervous system has three features that are

critical for understanding the mechanisms underlying perceptual

categorization: (i) Connectivity from a topographically mapped

primary area with transient activity to a non-topographically

mapped higher area with more persistent activity. (ii) Sensory

input that is continuous and temporally correlated with self-

generated movement. (iii) Activity-dependent learning in which

competitive mechanisms categorize sensory information and

select for appropriate behavioral repertoires.

All of these features were necessary for Darwin VII to achieve

invariant object recognition. Because a given visual stimulus

spent more of the time in Darwin VII’s gripper, VAP neuronal

units with receptive fields near the gripper were initially selected

for and their corresponding connections to neuronal units in IT

were potentiated (see Fig. 4, ‘First Horizontal Shaped Block’).

Once localized and patterned activity began in IT, it tended to

sustain itself via local recurrent excitation combined with lateral

inhibition. Continual overlapping input from VAP as Darwin VII

moved toward and away from the stimulus block (Almassy et al.,

1998) led to the reinforcement of the specific pattern of changes

in synaptic strength from the retinotopically mapped VAP

neuronal units to the non-topographic populations of neuronal

units in IT. By these means, the activity of VAP neuronal units that

drove IT neuronal units into a stimulus-dependent pattern of

activity expanded from those with receptive fields near Darwin

VII’s gripper to those involving an almost complete coverage of

the visual field (see Fig. 4, ‘Fifth Horizontal Striped Block’). As a

result, IT neuronal units were primed to respond to stimuli over

a wider range of Darwin VII’s visual field. Invariant object

recognition is thus a system property that emerges dynamic-

ally from competitive neuronal group interactions within and

between neural areas. These interactions differ from those of

other models in which images are typically static and invariant

object recognition is achieved by arranging features to line up

across multiple views (Mundy and Zisserman, 1992; Mundy et

al., 1992; Shashua, 1993; Weinshall, 1993), by deriving a learn-

ing rule that utilizes the temporal trace of neural activity (Wallis

and Rolls, 1997; Rolls and Stringer, 2001), or by placing the

main responsibility for invariance on neuronal properties alone

(Tovee et al., 1994; Rolls and Tovee, 1995).

One striking characteristic of Darwin VII observed under all

circumstances was the individuality of the patterns displayed by

each subject’s neural responses even for repetitions of the same

behavior (see Fig. 5). This is consistent with the observation

that adaptive behaviors tend to remain similar despite changes

in context and variance in system properties resulting from

multiple interactions across circuitry, plastic synaptic connec-

tions, f luctuating value systems, and variable object encounters.

Figure 8. Distribution of synaptic weights for the connections between neuronal units in areas IT and motor behavior units (Mapp and Mave) for all seven Darwin VII subjects. The
distributions show the number of synapses with different synaptic weight values. Summing across all subjects, each projection, IT→Mave and IT→Mapp, has ∼ 15 000 synapses, but
only those weights that changed from their initial value are shown in the figures. (A) Appetitive and aversive learning rates for the synaptic efficacy rules are equal (lower trace in inset;
see function F in Appendix, C. Activity-dependent Synaptic Plasticity). The synaptic weights for the projection from IT to Mapp are higher than those for the projection from IT to Mave.
Approximately 5000 IT→Mapp synapses increased from their initial weight, whereas ∼ 1300 IT→Mave synapses increased from their initial weight. (B) Synaptic efficacy is higher for
the IT to Mave connection (upper trace in inset) than the IT to Mapp connections (lower trace in inset). Synaptic weight distributions for the projection from IT to Mave are similar to
those from the projection from IT to Mapp. In both IT→Mapp and IT→Mave, ∼ 5000 synapses increased from their initial weight. The inset shows the learning functions for the rule for
synaptic efficacy change. For the definition of the synaptic efficacy function F, see the Appendix, part C. Parameters for the different projections are given in Table A2.
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Thus, Darwin VII is structurally and behaviorally degenerate:

different circuits and dynamics can yield similar behavior

(Tononi et al., 1999; Edelman and Gally, 2001). The develop-

mental experiments comparing responses to strongly biased

samples of appetitive or aversive stimuli indicate, however, that

even with identical starting architectures, changes in experi-

ential sequences can have profound effects. While this has been

documented phenomenologically with living organisms, the

experiments reported here may suggest possible mechanisms

underlying such epigenetic biases.

The ability to modify various levels of control in Darwin VII

provides insights into the neural mechanisms of learning during

conditioning. For example, when CS1 was an auditory cue and

CS2 was a visual cue, our second-order conditioning experiments

revealed an asymmetry that was initially unexpected: a pre-

dominance of appetitive conditioned responses over aversive

responses that is analogous to the psychological phenomenon of

overshadowing. Overshadowing occurs when an intense, salient

stimulus gains control of responses at the expense of another less

salient stimulus (Pavlov, 1927; Staddon, 1983). In the second-

order conditioning experiments where the CS1 was an auditory

cue and CS2 was a visual cue, behavior  similar  to  that of

overshadowing occurred in Darwin VII for two reasons. First,

because of the simple tonotopic mapping in A1, responses to

auditory stimuli were stronger and easier to categorize than

visual stimuli. No overshadowing occurred when CS1 was visual

and CS2 was auditory, since visual categories in IT and the

appropriate behavioral response developed during primary

conditioning when visual stimuli (CS1) were paired with taste

(US). Secondly, during the second stage of conditioning when

both CS1 and CS2 were present, responses to the reinforcement

(i.e. taste) of appetitive stimuli overshadowed aversive learning.

This is attributable to the fact that after aversive learning the

blocks were avoided before gripping and therefore taste

reinforcement did not take place. Thus, in this sequence,

Darwin VII generalized incorrectly that all visual stimuli were

predictive of positive value. In the appetitive learning condition,

this avoidance did not occur and reinforcement came from the

US (taste) and CS1 (auditory cue). Conditioning performance

more consistent with animal models was obtained by altering the

synaptic efficacy so that changes in plasticity were on average

larger for aversive events than for appetitive events (see Figs 7

and 8). These results are consistent with the observation that the

brain uses different learning rates for punishment and reward

and that, in some cases, this difference may be crucial for an

organism’s survival (Garcia et al., 1955; Siucinska et al., 1999;

O’Doherty et al., 2001).

The design of brain-based devices such as Darwin VII that

possess neuroanatomical structure and large-scale neural

dynamics differs fundamentally from that of robots. Unlike

Darwin VII, robotic approaches using classical artificial intelli-

gence are based on data representation, rule-driven algorithms,

and the manipulation of formal symbol systems (Moravec, 1983;

Nilsson, 1984). Artificial intelligence has been somewhat suc-

cessful in emulating logical aspects of human behavior, but has

been less successful in dealing with perception, categorization

and movement in the world, which is a strength of synthetic

neural models and brain-based devices (Reeke and Edelman,

1988; Pfeifer and Scheier, 1997). Purely reactive or behavior-

based robots carry out actions that are controlled through

arbitration of several primitive behavioral repertoires without

neural architectures (Brooks, 1986; Arkin, 1993). Evolutionary

robotics, in which control systems are selected after each trial

or lifetime according to a fitness function (Nolfi and Floreano,

2000), can evolve complex behaviors with very simple systems,

but also do not emphasize neuronal responses. A recent hybrid

between evolutionary algorithms and artificial neural network

learning rules was designed to mutate learning rules between

trials, allowing learning during the lifetime of the robot

(Floreano and Mondada, 1998). Typically, however, the artificial

neural networks controlling the evolutionary robot’s behavior

were small (on the order of tens of artificial ‘neural units’) and

they did not ref lect neuroanatomical organization.

In its present form, Darwin VII has several limitations. In

comparison to organisms that its behavior mimics, it has an

extremely simple nervous system. Re-entrant connections

(Edelman, 1987) within a neural area are present in the model,

but re-entrant connections between neural areas, such as A1 and

IT, are currently not implemented. This limits intra-modal and

cross-modal interactions, making its behavior purely stimulus

driven. Moreover, the activity in a simulation cycle is the average

of a relatively small population of neurons over 100–200 ms, and

the spiking dynamics of individual neurons cannot presently be

explored with this model. Despite these limitations, Darwin

VII’s performance shows that, regardless of the existence of

individual variance, neurally based devices acting in the real

world can carry out consistent behaviors.

One might ask why the simulation must include behaviors in

the real world. Why not simulate the environment as well as the

brain? The answer rests in the constructive nature of the brain

and behavioral responses to real-world inputs (Chiel and Beer,

1997; Clark, 1997). For example, to specify the outlines of an

environmental object in a pure computer simulation of the

environment would contribute an a priori bias in the form of a

detailed albeit implicit instruction. In contrast, by acting in the

real world, Darwin VII decides ‘for itself’ on object properties

and then constructs appropriate responses. By using a real-world

environment, not only is the risk of introducing biases into

the model reduced, but also the experimenter is freed from the

substantial burden of constructing a highly complex simulated

environment (Edelman et al., 1992).

Although the world of Darwin VII is much simpler than a real

econiche, there does not seem to be a fundamental restriction on

constructing a more complex phenotype to deal with a richer

environments. Experiments exploring the effects of different

neuroanatomical arrangements, the effects of lesions, and of

altered synaptic responses are also now possible. As in the

present experiments, the behaviors of the resulting brain-based

devices would emerge solely as a result of internally generated

activity of their nervous systems rather than of responses to any

programmed instructions from computer software. Devices of

this kind might prove useful in situations of novelty where

computation is not possible or in cases of great local complexity

where programming proves infeasible. In the near future, such

devices are not likely to include behaviors as rich as those of

higher vertebrates, and therefore their greatest practical use may

at present be to complement computers in a hybrid arrange-

ment, i.e. a brain-based device linked to a conventional digital

computer. Since the fundamental operation of such devices

includes random f luctuations and unpredictable behaviors, they

are not in any strict sense Turing machines. Although the phrase

‘machine psychology’ may thus appear to be a misnomer, it may

be nevertheless be usefully applied to the behavior of non-living

things that learn. In any case, providing such synthetic construc-

tions with increasingly sophisticated neural circuits and body

forms should give further valuable insights into the relationships

between brain, body and behavior.
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Appendix: Specifics of Neuronal Responses, Input and Output in
Darwin VII

A. Computation

The simulated nervous system was run on a Quad Pentium III Xeon

Linux workstation capable of communicating with the mobile base.

The workstation received visual input via radio frequency (RF) video

transmission from a CCD camera mounted on the mobile base (see

Appendix, part E). The workstation received  auditory and gripper

information, and transmitted motor and actuator commands via an RF

modem (see Appendix, part F).

B. Neuronal Unit Activity

The total contribution of input to unit i is given by

where M is the number of different anatomically defined connection

types (see Table A2) and Nl is the number of connections per type M

projecting to unit i. Negative values for cij corresponded to inhibitory

connections. The activity level of unit i is given by:

where

and ω determined the persistence of unit activity from one cycle to the

next, σi is a unit specific firing threshold, and gi is a scale factor. Specific

parameter values for neuronal units are given in Table A1.

C. Activity-dependent Synaptic Plasticity

Activity-dependent synaptic changes in cij were given by

where si(t) and sj(t) are activities of post- and pre-synaptic units,

respectively, η is a fixed learning rate, ε is a decay constant, and cij(0) is

the initial (t = 0) weight of connection cij. The decay constant ε governed

a passive, uniform decay of synaptic weights to their original starting

values. The function F, similar to the BCM learning rule (Bienenstock et

al., 1982), determines limits on potentiation and depression that depend

upon post-synaptic activity. F was implemented as a piecewise linear

function defined by two thresholds (0 < θ1 < θ2 < 1), two inclinations (k1,

k2) and a saturation parameter ρ (ρ = 6 throughout).

See Figure 8 inset for a representative chart of the function. Specific

parameter settings for fine-scale synaptic  connections are given in

Table A2.

D. Value-dependent Synaptic Plasticity

A value term was computed as

where d is  the delay  of the value term and  is incremented every

simulation cycle after the onset of area S activity with a range of 1–9, S is

the average activity in area S, and v(d – 1) is the value of V at time d – 1.

f is a convolution function that scales the activity over the delay period

with values of 0.1, 0.1, 0.3, 0.7, 1.0, 1.0, 0.7, 0.3 and 0.1 for the nine delay

increments. The effect of this convolution is to delay onset of the value

system activity and spread the activity over time. The synaptic change for

value-dependent synaptic plasticity was given by:

E. Visual System and its Input

The CCD camera sent 320 × 240 pixel monochrome video images, via an

RF transmitter, to an ImageNation PXC200 frame grabber attached to the

computer running the neural simulation. The image was clipped, such

that only the center square of the image remained, and it was then

spatially averaged to produce a 64 × 64 pixel image. Each pixel was

normalized between 0 (black) and 1 (white) and mapped directly to

neuronal units of area R in the neural simulation. R neuronal units

projected retinotopically to neuronal units in neural area VAP, which

in turn projected to neural area IT non-topographically (see Fig. 2 and

Table A2).

F. Auditory System and its Inputs

Microphone input was amplified and filtered in hardware. An RMS (root

mean square) chip measured the amplitude of the signal and a comparator

chip produced a square waveform which allowed frequency to be

measured. Every millisecond, the microcontroller on NOMAD calculated

the overall microphone amplitude by averaging  the  current  signal

amplitude measurement with the previous three signal amplitude

measurements. The microcontroller calculated the frequency of the

microphone signal at each time point by inverting the average period of

the last eight square waves. LCoch and RCoch each had 64 neuronal units.

Their response was based on the frequency and amplitude information

received from the microcontroller via the RF modem. Each cochlear

neuronal unit had a cosine tuning curve with a tuning width of 1 kHz and

a preferred frequency, which ranged over the ensemble of units from 2.9

to 4.2 kHz. Activity of  a cochlear neuronal  unit was obtained  by

multiplying the value from its cosine tuning curve by the amplitude of the

microphone signal. Cochlear neuronal units projected tonotopically to

neuronal units in neural area A1 (see Fig. 2 and Table A2).
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Table A1
Values of parameters defining properties of neuronal units in Darwin VII

Area Size g σ ω

R 64 × 64 1.50 0.20 0.00
VAP-B 64 × 64 1.33 0.65 0.50
VAP-H, VAP-V 64 × 64 1.50 0.50 0.50
IT 28 × 28 1.10 0.04 0.03
ITi 14 × 14 1.35 0.02 0.15
LCoch, RCoch 1 × 64 2.00 0.10 0.30
A1 28 × 28 1.50 0.50 0.50
A1i 28 × 28 1.35 0.02 0.15
Mapp, Mave 3 × 6 2.00 0.10 0.30
Tapp, Tave 3 × 6 2.00 0.10 0.30
S 2 × 2 2.00 0.05 0.15
So 4 × 4 3.00 0.15 0.22
Si 2 × 2 2.00 0.10 0.22
C 20 × 20 1.33 0.65 0.50
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G. Sampling of IT Activity for Classification of Responses

In order to test the classification of responses to visual stimuli based on IT

activity, the patterns of activity in IT during the development of visual

categories were compared with templates consisting of individual

patterns of IT activity in response to visual stimuli after categorization

had developed. Since patterns of activity varied for each Darwin VII

subject, a separate template and comparison needed to be made for each

individual. A template was created for each Darwin VII subject by taking

the average activity of neuronal units in area IT in response to the last 10

presentations of a particular stimulus class. Templates were made for

each of the visual stimulus classes (blob, horizontal, vertical) as well as a

template with random activity which was achieved by shuff ling the blob

template. The metric used to compare activity of IT with the templates

was

where j is an index over the stimulus classes, and sj is the template for

stimulus j, i is an index into the neuronal units, IT is the current activity

of neuronal area IT, and s is the predicted stimulus. A classification was

regarded as correct if the predicted stimulus, s, was equal to the observed

stimulus. In results reporting a sub-sample of IT activity, a randomly

chosen percentage of IT neuronal units was selected for each Darwin VII

subject. To ensure that the accuracy did not depend on a specific subset

of neuronal units, 10 such random samples were averaged together for

each Darwin VII subject. Thus, the accuracy of classification reported in

Figure 6 is the average of seven Darwin VII subjects where the

classification accuracy of each individual subject is based on an average of

10 random samples (see Fig. 6).
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Table A2
Properties of anatomical projections and connection types in Darwin VII

Projection P Arbor cij(0) η ε θ1 θ2 k1 k2

R→VAP-B 1.00 O 3 × 3 0.03, 0.03 0.0 0.0 0.0 0.0 0.0 0.0
R→VAP-H 1.00 [] 0 × 4 0.04 0.0 0.0 0.0 0.0 0.0 0.0
R→VAP-V 1.00 [] 4 × 0 0.04 0.0 0.0 0.0 0.0 0.0 0.0
Early: VAPB→IT 0.01 non-topo 0.04, 0.08 0.125 0.00125 0.10 0.25 0.45 0.45
Mid: VAPB→IT 0.01 non-topo 0.04, 0.08 0.05 0.0005 0.10 0.25 0.45 0.45
Late: VAPB→IT 0.01 non-topo 0.04, 0.08 0.03 0.0003 0.10 0.25 0.45 0.45
Early: VAPH, VAPV→IT 0.0175 non-topo 0.04, 0.08 0.125 0.00 125 0.10 0.25 0.45 0.45
Mid: VAPH, VAPV→IT 0.0175 non-topo 0.04, 0.08 0.05 0.0005 0.10 0.25 0.45 0.45
Late: VAPH, VAPV→IT 0.0175 non-topo 0.04, 0.08 0.03 0.0003 0.10 0.25 0.45 0.45
IT→ITi 1.00 Θ 2, 3 0.06, –0.06 0.0 0.0 0.0 0.0 0.0 0.0
ITi →IT 1.00 [] 1 × 1 –0.36, –0.50 0.0 0.0 0.0 0.0 0.0 0.0
IT →IT 1.00 O 1 0.10, 0.14 0.0 0.0 0.0 0.0 0.0 0.0
IT→Mapp, Mave† 0.15 non-topo 0.0006, 0.0010 0.006 0.00006 0.01 0.16 0.1 0.16
IT→Mave† (see note) 0.15 non-topo 0.0006, 0.0010 0.006 0.00006 0.005 0.08 0.1 0.48
IT→So† 0.05 non-topo 0.0005, 0.0015 0.02 0.002 0.01 0.18 0.05 0.05
R→C 0.50 [] 2 × 2 0.10 0.10 0.0 0.0 0.0 0.0 0.0
Early: LCoch, RCoch→A1 0.65 [] 13 × 2 0.10, 0.13 0.01 0.0001 0.14 0.29 0.45 0.15
Mid: LCoch, RCoch→A1 0.65 [] 13 × 2 0.10, 0.13 0.005 0.00005 0.14 0.29 0.45 0.15
Late: LCoch, RCoch→A1 0.65 [] 13 × 2 0.10, 0.13 0.003 0.00003 0.14 0.29 0.45 0.15
A1→A1i 1.00 [] 8 × 18 0.06, 0.06 0.0 0.0 0.0 0.0 0.0 0.0
A1i →A1 1.00 O 1 –0.30, –0.46 0.0 0.0 0.0 0.0 0.0 0.0
A1 →A1 0.25 O 1 0.05, 0.075 0.0 0.0 0.0 0.0 0.0 0.0
A1→Mapp, Mave† 0.15 non-topo 0.0006, 0.0010 0.006 0.00006 0.01 0.16 0.1 0.16
A1→Mave† (see note) 0.15 non-topo 0.0006, 0.0010 0.006 0.00006 0.005 0.08 0.1 0.48
A1→So† 0.05 non-topo 0.0005, 0.0015 0.02 0.002 0.01 0.18 0.05 0.05
Tapp, Tave→So, Mapp, Mave 1.00 O 1 0.12, 0.12 0.0 0.0 0.0 0.0 0.0 0.0
Mapp↔Mave 1.00 non-topo –0.12, 0.12 0.0 0.0 0.0 0.0 0.0 0.0
Si→S 1.00 [] 2 × 2 –0.27, –0.30 0.0 0.0 0.0 0.0 0.0 0.0
So→S 1.00 [] 2 × 2 0.09, 0.11 0.0 0.0 0.0 0.0 0.0 0.0
So→Si 0.80 [] 2 × 2 0.05, 0.06 0.0 0.0 0.0 0.0 0.0 0.0

A pre-synaptic neuronal unit is connected with a post-synaptic neuronal unit with a given probability (P) and given projection shape (Arbor). This arborization shape can be rectangular ‘[]’ with a height and
width (h × w), circular ‘O’ with a radius (r), doughnut shaped ‘Θ’ with the shape constrained by an inner and outer radius (r1, r2), or non-topographical ‘non-topo’ where any pairs of pre-synaptic and
post-synaptic neuronal units have a given probability of being connected. The initial connection strengths, cij(0), are set randomly within the range given by a minimum and maximum value (min, max). A
negative value for cij(0) indicates inhibitory connections. Projections marked † are value-dependent. Non-zero values for η, ε, θ1, θ2, k1 and k2 signify activity-dependent plastic connections. In the
perceptual categorization experiments, the properties of the projections were not altered over time. In the conditioning experiments, we modeled a transition from a critical learning period to a later adult
period. Specifically, the learning rate η and the decay rate ε, for primary sensory (VAP or LCoch/RCoch) to higher sensory (IT or A1) projections decreased based on stimulus exposure. ‘Early’ corresponded
to the 1st through 20th exemplars for a given modality (i.e. auditory: LCoch/RCoch→A1; visual: VAP→IT), ‘Mid’ corresponded to the 21st through 40th exemplars, and ‘Late’ corresponded to approximately
the 41st through 60th exemplars. Note that higher learning rates for aversive events were used in some of the conditioning experiments (see text and Fig. 8 for details).
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